互联网www.guzlop-editoras.com
Verificación : 518e61d78b5f7f6e Descargas .:Guzlop:. a través del tiempo

Loading
Cambio climático
.
CAMBIO CLIMÁTICO
No debe confundirse con Calentamiento Global.
Se llama cambio climático a la modificación del clima con respecto al historial climático a una escala global o regional. Tales cambios se producen a muy diversas escalas de tiempo y sobre todos los parámetros meteorológicos: temperatura, presión atmosférica, precipitaciones, nubosidad, etc. En teoría, son debidos tanto a causas naturales (Crowley y North, 1988) como antropogénicas (Oreskes, 2004). El término suele usarse de manera poco apropiada, para hacer referencia tan solo a los cambios climáticos que suceden en el presente, utilizándolo como sinónimo de calentamiento global. La Convención Marco de las Naciones Unidas sobre el Cambio Climático usa el término «cambio climático» solo para referirse al cambio por causas humanas: Por "cambio climático" se entiende un cambio de clima atribuido directa o indirectamente a la actividad humana que altera la composición de la atmósfera mundial y que se suma a la variabilidad natural del clima observada durante períodos comparables. Además del calentamiento global, el cambio climático implica cambios en otras variables como las lluvias y sus patrones, la cobertura de nubes y todos los demás elementos del sistema atmosférico. La complejidad del problema y sus múltiples interacciones hacen que la única manera de evaluar estos cambios sea mediante el uso de modelos computacionales que simulan la física de la atmósfera y de los océanos. La naturaleza caótica de estos modelos hace que en sí tengan una alta proporción de incertidumbre (Stainforth et ál., 2005) (Roe y Baker, 2007), aunque eso no es óbice para que sean capaces de prever cambios significativos futuros (Schnellhuber, 2008) (Knutti y Hegerl, 2008) que tengan consecuencias tanto económicas (Stern, 2008) como las ya observables a nivel biológico (Waltheret ál., 2002)(Hughes, 2001).
.
ENERGÍA RENOVABLE Y MITIGACIÓN
Por primera vez, una serie de datos completos sobre los costos y las emisiones de gases de efecto invernadero de diversas tecnologías y escenarios confirma la función primordial que cumplen las fuentes renovables, independientemente de cualquier acuerdo tangible sobre la mitigación del cambio climático.

La demanda de energía y de servicios conexos, con miras al desarrollo social y económico y a la mejora del bienestar y la salud de las personas, va en aumento. Todas las sociedades necesitan de servicios energéticos para cubrir las necesidades humanas básicas (por ejemplo, de alumbrado, cocina, ambientación, movilidad y comunicación) y para los procesos productivos.
Desde 1850, aproximadamente, la utilización de combustibles de origen fósil (carbón, petróleo y gas) en todo el mundo ha aumentado hasta convertirse en el suministro de energía predominante, situación que ha dado lugar a un rápido aumento de las emisiones del dióxido de carbono (CO2).

Las emisiones de gases de efecto invernadero (GEI) que genera la prestación de servicios energéticos han contribuido considerablemente al aumento histórico de las concentraciones de esos gases en la atmósfera. Los datos recientemente obtenidos confirman que el consumo de combustibles de origen fósil representan la mayor parte de las emisiones mundiales de GEI de origen antropogénico. Las emisiones siguen aumentando y, al término de 2010, las concentraciones de CO2 eran ya superiores a 390 ppm, un 39% por encima de los niveles preindustriales.

Se evaluaron algunas de estas opciones, como las relativas a la conservación y eficiencia energéticas, el reemplazo de combustibles de origen fósil, las energías renovables, la energía nuclear, o la captura y el almacenamiento del dióxido de carbono.Además de su gran potencial para mitigar el cambio climático, las energías renovables pueden aportar otros beneficios. Si se utilizan de forma adecuada, las energías renovables pueden contribuir al desarrollo social y económico, favorecer el acceso a la energía y la seguridad del suministro de energía, y reducir sus efectos negativos sobre el medio ambiente y la salud.

El concepto de energía renovable abarca categorías heterogéneas de tecnologías. Algunos tipos de energía renovable permiten suministrar electricidad y energía térmica y mecánica, y producir combustibles capaces de cubrir las múltiples necesidades de los servicios energéticos [1.2]. Algunas tecnologías de la energía renovable pueden ser adoptadas en el lugar de consumo (en régimen descentralizado) en medios rurales y urbanos, mientras que otras son implantadas principalmente en redes de suministro de gran tamaño (en régimen centralizado). Aunque es cada vez mayor el número de tecnologías de la energía renovable técnicamente avanzadas que han sido adoptadas en mediana escala, otras se encuentran en una fase menos evolucionada y su presencia comercial es más incipiente, o bien abastecen nichos del mercado especializados.
La energía proporcionada por las tecnologías de la energía renovable puede ser: i) variable y (en cierta medida) impredecible en diferentes escalas temporales (de minutos a años), ii) variable pero predecible, iii) constante, o iv) controlable.

La bioenergía puede obtenerse mediante diversas fuentes de biomasa, a saber, de residuos forestales, agrarios o pecuarios; una rotación rápida de plantaciones forestales; cultivos energéticos; componentes orgánicos de residuos sólidos urbanos, y otras fuentes de desechos orgánicos. Mediante diversos procesos, esos materiales pueden ser utilizados para producir de forma directa electricidad o calor, o para generar combustibles gaseosos, líquidos o sólidos. Las tecnologías de la bioenergía son muy diversas y su grado de madurez técnica varía considerablemente. Algunas ya comercializadas son las calderas de pequeño o gran tamaño, los sistemas de calefacción central por gránulos, o la producción del etanol a partir del azúcar y el almidón. Las centrales de energía avanzadas de ciclos combinados de gasificación integrada a partir de biomasa y los combustibles para el transporte obtenidos de la lignocelulosa son ejemplos de tecnologías todavía no comercializadas, mientras que la producción de biocombustibles líquidos a partir de algas y otros métodos de conversión biológica se encuentran en la fase de investigación y desarrollo (I+D). Las tecnologías de la bioenergía tienen aplicaciones en contextos, tanto centralizados como descentralizados, y su aplicación más extendida es la utilización tradicional de la biomasa en los países en desarrollo4 . La producción de bioenergía suele ser constante o controlable. Los proyectos de la bioenergía dependen generalmente del combustible disponible a nivel local y regional, aunque en los últimos tiempos parece haber indicaciones de que la biomasa sólida y los biocombustibles líquidos están cada vez más presentes en el comercio internacional.

Las tecnologías de la energía solar directa explotan la energía irradiada por el sol para producir electricidad mediante procesos fotovoltaicos o mediante la energía por concentración solar, generando energía térmica (con fines de calefacción o refrigeración, y por medios pasivos o activos) para usos de iluminación directa y, posiblemente, para producir combustibles para el transporte o de otra índole. El grado de evolución de las aplicaciones solares abarca desde las tecnologías de I+D (por ejemplo, en la producción de combustibles a partir de la energía solar) hasta otras relativamente maduras (por ejemplo, la energía por concentración solar) o maduras (por ejemplo, la calefacción solar pasiva y activa, o la tecnología de la energía fotovoltaica con placas de silicio). Otras tecnologías —aunque no todas— son modulares, por lo que pueden ser utilizadas tanto en sistemas de energía centralizados como descentralizados. La energía solar es variable y, en cierta medida, impredecible, aunque en determinadas circunstancias el perfil temporal de la producción de la energía solar está bastante correlacionado con la demanda de energía. El almacenamiento de energía térmica ofrece la posibilidad de mejorar el control de la producción en algunas tecnologías, como la energía por concentración solar o la calefacción solar directa.

La energía geotérmica explota la energía térmica accesible del interior de la Tierra. En esta modalidad, el calor es extraído de reservorios geotérmicos mediante pozos, o por otros medios. Los reservorios que se hallan suficientemente calientes y permeables en estado natural se denominan "reservorios hidrotérmicos", mientras que otros, cuya temperatura es suficientemente elevada pero que es necesario mejorar mediante estimulación hidráulica, se denominan "sistemas geotérmicos mejorados". Una vez en la superficie, es posible utilizar fluidos a distintas temperaturas para generar electricidad, o destinarlos más directamente a aplicaciones alimentadas de energía térmica, en particular la calefacción de áreas residenciales o la utilización de calor a baja temperatura extraído de pozos poco profundos y enviado a bombas de calor geotérmicas, utilizadas con fines de calefacción o refrigeración. Las centrales de energía hidrotérmica y las aplicaciones térmicas de la energía geotérmica son tecnologías evolucionadas, mientras que los proyectos de sistemas geotérmicos mejorados se encuentran en fase de demostración o fase piloto, y están todavía en fase de I+D. Cuando se utilizan para generar electricidad, las centrales de energía geotérmica ofrecen, por lo general, una producción constante.

La energía hidroeléctrica explota la energía del agua en su caída, principalmente para generar electricidad. Los proyectos de energía hidroeléctrica pueden consistir en presas con embalses, proyectos a lo largo de un río o en mitad de la corriente, y pueden abarcar todo tipo de escalas. Esta diversidad confiere a la energía hidroeléctrica capacidad para responder a necesidades urbanas centralizadas y en gran escala, pero también a las necesidades rurales descentralizadas. Las tecnologías de la energía hidroeléctrica se encuentran en fase avanzada. Los proyectos de energía hidroeléctrica explotan un recurso que varía a lo largo del tiempo. Sin embargo, la producción controlable generada en embalses por las centrales hidroeléctricas permite cubrir los picos de la demanda eléctrica, y ayuda a equilibrar otros sistemas de electricidad cuya producción de energía renovable es muy variable. La utilización de los embalses de energía hidroeléctrica refleja frecuentemente sus múltiples usos de agua potable, riego, control de crecidas y sequías, navegación, o suministro de energía, entre otros.

La energía oceánica se obtiene a partir de la energía potencial, cinética, térmica o química del agua de mar, que puede ser transformada para suministrar electricidad, energía térmica o agua potable. Es posible utilizar tecnologías muy diversas: muros de contención de la amplitud de la marea, turbinas submarinas para las corrientes de marea y oceánicas, intercambiadores de calor para la conversión de energía térmica oceánica, y una gran diversidad de dispositivos que permiten controlar la energía del oleaje y los gradientes de salinidad. Si se exceptúan los muros de contención de la marea, las tecnologías oceánicas se encuentran en fase de demostración o de proyecto piloto, y muchas de ellas deben pasar todavía por una fase de I+D. Algunas presentan pautas de producción de energía variables con diferentes grados de predictibilidad (por ejemplo, las que explotan las olas, el desnivel de las mareas o las corrientes), mientras que otras pueden ser utilizadas en régimen prácticamente constante, o incluso controlable (por ejemplo, las basadas en el gradiente térmico o de salinidad del océano).

La energía eólica explota la energía cinética del aire en movimiento. La aplicación de mayor interés para la mitigación del cambio climático consiste en producir electricidad a partir de grandes turbinas eólicas instaladas en tierra firme (en tierra) o en el mar o agua dulce (aguas adentro). Algunas tecnologías de energía eólica en tierra están siendo ya comercializadas y adoptadas en gran escala. Las tecnologías de la energía eólica aguas adentro ofrecen más posibilidades para conseguir avances técnicos. La energía eólica es, en cierta medida, variable e impredecible, pero la experiencia y ciertos estudios detallados en numerosas regiones indican que la integración de la energía eólica no suele tropezar con obstáculos técnicos insuperables.


1.
Guía para el cálculo de la huella de carbono en productos acuícolas;
Fundación Observatorio Español de Acuicultura, Madrid
Resumen

2.
¿Hasta qué punto deberíamos buscar sinergias entre el desarrollo agrícola y la mitigación climática?;
FAO
Resumen

3.
Informe especial sobre fuentes de energía renovables y mitigación del cambio climático;
IPCC
Resumen

4.
La resiliencia de los medios de vida;
FAO
Resumen

5.
Las posibilidades de financiación del carbono para la agricultura, la actividad forestal y otros proyectos de uso de la tierra en el contexto del pequeño agricultor;
FAO
Resumen

6.
Mitigación de las emisiones de gases de efecto invernadero en la producción ganadera;
FAO
Resumen

     
 

 

 
     
     

InicioPublicacionesCatálogoDescargas • Atención al cliente (511)731-2457 / (511)9595-52765guzlopster@gmail.com